Wednesday, March 18, 2020
Anitbiotic resistant bacteria essays
Anitbiotic resistant bacteria essays Almost 60 years ago the first antibiotics were developed, and they were created at a time when previously untreatable infections such as tuberculosis, gonorrhea, and syphilis could be almost miraculously cured. Infections like these could be a death sentence, and until recently they many be just that again. Microbes are learning the ability to fight of these antibiotics and become resistant to them. They are gaining resistance through a number of different ways, and science is in a race to keep up with there amazing evolution. Bacteria are the common name for prokaryotic cells, which lack a nucleus. Rather they have a nucleoid region where their DNA is stored in direct contact with their cytoplasm. Their DNA, through transcription and translation, directs ribosomes to assemble proteins. They reproduce by binary fission, and are mostly heterotrophic. Bacteria can exchange DNA in three ways: transformation, transduction, and conjugation. In transformation a bacterial cell becomes competent, or able to take up DNA from the surrounding fluids. In conjugation two bacterial cells, a donor and a recipient join and DNA is transferred from one to the other. In these cases the new DNA either incorporates itself into the existing DNA or forms an independent molecule within the cell called a plasmid (Christensen). Antibiotics are substances produced by microorganisms that kill or inhibit other microorganisms from growing or reproducing. Antibiotics are products of the earth and are all-natural. For clinical purposes, bacteria are said to be resistant to an antimicrobial when they are insignificantly affected by concentrations of the drug that can be achieved at the site of the infection. As might be expected, achievable concentrations vary dramatically from place to place in the body. Sensitivity of organisms to antimicrobials may be quantified by the minimum concentration required to inhibit their growth (minimum inhibitory concen...
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.